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We present both numerical and experimental results to study the diffraction of twisted light beams based on
orbital angular momentum (OAM) eigenmode decomposition, where the total initial field, including light and
aperture, is represented by a two-dimensional spectrum of Laguerre–Gaussian modes. We use a phase-only spa-
tial light modulator to display a holographic grating for both generating the twisted light and mimicking the
finite aperture.We take a triangular aperture as an example to describe the diffraction behavior of a twisted light
beam carrying an OAM number of l ¼ 3 from the near-field to far-field regions, where the interesting gradual
formation of triangular bright lattices are observed. An excellent agreement between the numerical simulations
and experimental observations is clearly seen. It is noted that this method is particularly useful for the study of
the diffraction of twisted light fields incident on any apertures of rotational symmetry.
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The Hermite–Gaussians (HG) modes are well known as
the nearly exact eigenmodes for stable optical resonators
and the normal modes of freely propagating optical
beams[1]. It has been well established that they form a com-
plete basis set for orthogonal polynomial expansions[2], so
an arbitrary input amplitude function can be expanded in
terms of HG modes and the forward traveling waves of
these modes may then be used to predict the amplitude
function at any diffraction distance[3]. Like HG modes,
the Laguerre–Gaussian (LG) modes also form a complete
set such that they can be used for the study of light propa-
gation based on a similar eigenmode expansion[4–6]. Also, as
was well recognized by Allen et al. in 1992, the LG modes
were a natural candidate to describe twisted light beams
carrying an orbital angular momentum (OAM) of lℏ per
photon associated with the helical phase structure of
expðilϕÞ, where l is the OAM quantum number (or topo-
logical charge) and ϕ is the azimuth angle[7]. Over the
last two decades, light OAM has attracted great interest
owing to its more and more significant applications in
micromanipulation[8,9], imaging techniques[10–13], optical
communication[14–16], and quantum information[17–19]. Based
on the completeness of OAM eigenmodes, another fasci-
nating application with OAM is the technique of digital
spiral imaging (DSI) developed by Torner et al. in 2005[20].
In this technique, a sample in the optical path scatters the
beam and alters its OAM components, thus the informa-
tion of the object can be extracted by analyzing the cor-
responding spiral spectrum, such as its spiral bandwidth
or the weights of the associated OAM eigenmodes[21].
Based on eigenmode expansion, e.g., HG and LG modes,
some basic procedures have been proposed as a math-
ematical tool to study the light propagation and

diffraction[22–24], which was also applied to study the radi-
ation focusing and steering in the free-electron laser[25,26]

and to study the fiber beam characterization[27]. However,
it is noted that there is still very little research reporting
both the numerical and experimental demonstrations of
this theoretical method, particularly for the case with in-
cident twisted light beams. Such an agreement between
the numerical and experimental results is therefore highly
desirable to confirm the reliability and effectiveness of the
eigenmode decomposition method.

In addition, the rich relationship between light OAM
and the far-field diffraction phenomena of single-slit[28–31],
double-slit[32], triangular[33–36], and multiple point-like aper-
tures[37] has been exploited before. The Talbot effect has
also been recently used to explore the topological charges
of optical vortices in the near-field regime[38]. Sepcifically,
in 2010, Hickmann et al.[33] successfully demonstrated a
very elegant way to directly reveal the magnitude and sign
of the topological charge of light via observing the optical
lattices diffracted by a triangular aperture. We note that
only the Fraunhofer diffraction pattern in the far-field re-
gion were investigated in their case, which is actually the
Fourier transform of the product of the aperture and the
input field functions[39]. Here we carefully study both
numerically and experimentally, based on the method
of OAM eigenmode decomposition or DSI[5,20,24], the dif-
fraction behavior of a twisted light beam with OAM num-
ber l ¼ 3 from a triangular aperture both in the near-field
and far-field regions. An interesting evolution of diffrac-
tion patterns from the near- to far-field region is observed,
which finally form the triangular bright lattice. A good
agreement between numerical simulations and experimen-
tal observations is clearly seen, and therefore confirms the
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feasibility of the theoretical method. This method is par-
ticularly useful for the study of twisted light diffraction by
any aperture of rotational symmetry.
Our numerical simulation is based on the method of

eigenmode decomposition or the idea of DSI[5,20,24]. As is
well known, the OAM eigenstates form a complete
orthogonal and infinite-dimensional basis for a full Hilbert
space so that we can treat any field distribution as a vector
state on the basis of OAM eigenmodes, which is called by
Torner et al. as the DSI technique[20]. Key to the theory is
that the LG modes are both the natural choice for describ-
ing twisted light carrying OAM and the solutions of the
paraxial wave equation. This indicates that the diffraction
of any LG beams in free space can be described just by its
mathematical expression in the cylindrical coordinates
ðρ;ϕ; zÞ, whose normalized form can be written as[40]

LGðρ;ϕ; zÞ ¼
�����������������������
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where ρ is the radial cylindrical coordinate, ϕ is the azimu-
thal angle, z is the propagation distance, k is the wave
vector, w is the beam waist, Ljlj

p ð·Þ is the generalized
Laguerre polynomial, and p and l are the radial and azi-
muthal mode indices, respectively. The incident plane z ¼
0 is also the position of the given aperture. Assuming any
incident structured light field is written by u0ðρ;ϕ; z ¼ 0Þ
and an arbitrary aperture is described by its transmission
function Tðρ;ϕÞ, their product can be effectively consid-
ered as the total initial field,

uðρ;ϕ; z ¼ 0Þ ¼ u0ðρ;ϕ; z ¼ 0ÞTðρ;ϕÞ: (2)

The key step to DSI is the decomposition of the initial
field of Eq. (2) into a coherent superposition of the LG
modes, namely,

uðρ;ϕ; z ¼ 0Þ ¼
Xþ∞

l¼−∞

Xþ∞

p¼0

Al;pLGl
pðρ;ϕ; z ¼ 0Þ; (3)

where LGl
pðρ;ϕ; z ¼ 0Þ is given by Eq. (1) when z ¼ 0.

Owing to the orthogonality of LG modes, namely,R
2π
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we can calculate the spiral spectrum of the scattered
beam. Each element in the spectrum is specified by

Al;p ¼
Z

2π

0
dϕ

Z
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½LGl
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(4)

which denotes the overlap amplitude between the relevant
individual LG mode and the initial field, or the weight of
the associated LG mode. With l ranging from −l0 to l0

and p from 0 to p0, Al;p is a ð2l0 þ 1Þ× ðp0 þ 1Þ complex
matrix that can be equivalently represented by an inten-
sity spectrum jAl;pj2 and a phase spectrum argðAl;pÞ. To
calculate the diffracted field at any desired propagation
distance z, we give an explanation from the physical per-
spective of mode decomposition, whose theoretical frame
is illustrated in Fig. 1. Following the DSI technique, we
can decompose the initial field in the incident plane
z ¼ 0, uðρ;ϕ; 0Þ, into a superposition of LG modes, as
was shown by Eq. (3). According to the principle of inde-
pendent propagation of light, all the LG modes contained
in Eq. (3) individually propagate in free space without
interplay with each other such that each mode weight
indicated by Eq. (4), Al;p, remains constant. Due to the
superposition principle of light, the diffracted field in
the desired plane z, uðρ;ϕ; zÞ, can then be treated as a con-
sequence of a coherent superposition of all these propagat-
ing LG modes, LGl

pðρ;ϕ; zÞ, namely,

uðρ;ϕ; z ¼ 0Þ → uðρ;ϕ; zÞ ¼
Xþ∞

l¼−∞

Xþ∞

p¼0

Al;pLGl
pðρ;ϕ; zÞ;

(5)

where Al;p are given by Eq. (4). Hence, calculating the dif-
fracted light fields at any desired plane can be simplified
by changing the z coordinate from the incident plane z ¼ 0
to any considered plane z for all constituent LG modes in
Eq. (5). In principle, this method can be effectively applied
to any incident light of arbitrary intensity/phase profile
that was diffracted by any aperture of arbitrary shape,
as indicated by Eqs. (2) and (3).

Our aim is to study the twisted light beam diffraction
both in the near and far field based on this theory. To
verify the feasibility, we consider the diffraction of twisted
light beams by a triangular aperture of threefold rota-
tional symmetry, as in the work by Hickmann et al.[33].
We choose an equilateral triangular aperture, shown
in Fig. 2(a), and use LabVIEW to program the superpo-
sition grating shown in Fig. 2(c). Unlike the work by
Hickmann et al., only studying the Fraunhofer diffraction
in the far-field region, here we begin with the study in the
near-field region and then change the distance z gradually
to the far-field region. Compared with the Fourier
method that only applies to Fraunhofer diffraction, our

Fig. 1. Schematic of the theoretical frame based on the DSI tech-
nique (see the text for details).
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demonstration shows the effectiveness of this OAM eigen-
mode decomposition method.
Our experimental setup is shown schematically in Fig. 2.

The vertically polarized Gaussian beam derived from a
633 nm He–Ne laser is collimated by a telescope, and then
is expanded and incident on the computer-controllable
spatial light modulator (SLM, Hamamatsu, X10486-1).
The SLM is used to generate the desired holographic gra-
ting, which contains the information of the incident OAM
beam and the aperture we need. As can be seen in the inset
of Fig. 2, the hologram displayed on the SLM is obtained
by using a triangular aperture to multiply the modulated
folk grating, which can be used to generate the standard
LG beam. This design can easily ensure that the input LG
beam and the triangular aperture completely coincide
with each other. Here we use a 4f system composed of
a pair of lenses whose focal lengths are f 1 ¼ 300 mm
and f 2 ¼ 150 mm, respectively. The first-order diffracted
light is selected by an iris positioned in the back focal plane
of L1. Then the initial field at z ¼ 0 can be imaged in the
back focal plane of lens L2. Finally, the diffraction pat-
terns at different propagation distances can be recorded
by a color charge-coupled device (CCD) camera.
Following the schematic of the theoretical frame, we

first plot in Fig. 3 the spiral spectra with an incident
twisted beam of l ¼ 3 and p ¼ 0. The total initial field
is determined by both the shape of the triangular aperture
and the spiral phase profile of the incident twisted beam.
After performing the mode decomposition based on
Eqs. (3) and (4), we calculate both the intensity spectrum
and phase spectrum, as shown in Figs. 3(a) and 3(b), re-
spectively, where l ranges from−6 toþ12, and p from 0 to
10. It is worth noting that the threefold rotational sym-
metry of the triangular aperture has been well evidenced
by the dominant LG components concentrated in l ¼
3n þ 3 and around the lower-order p, where n is an integer.
By summing p for each l mode over all the indices,
namely, Cl ¼ P

pjAl;pj2, we then obtain a pure OAM
spectrum of Fig. 3(c) that manifests the threefold sym-
metry more clearly. Based on Eq. (3), the total initial field
with z ¼ 0 is also recovered in Fig. 3(d) by using the
spectrum shown in Figs. 3(a) and 3(b). One can see from

Fig. 3(d) that a little aberration of the incident twisted
beam is shown in the center of the triangular aperture.
We attribute this issue to the use of the limited number
of LG modes only with l ¼ −6 to 12 and p ¼ 0 to 10.
However, the fidelity in Fig. 3(d), defined as F ¼P

l;pjAl;pj2 can reach F ¼ 0.9, implying a good similarity
between the reconstructed field and the original one,
which also confirms the effectiveness of the method.

Then, based on Eq. (5) with Fig. 3, we gradually in-
creased the propagation distance from the near-incident
plane, e.g., z ¼ 3 cm to the far-field plane, e.g., z ¼ 70 cm.
We present in Fig. 4 both the simulation (top panel)
and experimental results (bottom panel) of some typical
diffraction patterns to illustrate the gradual birth of the
triangular optical lattice. From Fig. 4, we can see that
the initial three leaves of intensity maxima are gradually
expanded and split into more intensity maxima. Mean-
while, after a certain propagation distance, there is a spot
coming into being and growing brighter in the transverse
center of the diffraction pattern. Finally, an interesting
triangular bright lattice is formed with the number of

Fig. 2. Experimental setup for studying the diffraction of a
twisted beam from a triangular aperture. Inset (a) is the triangu-
lar aperture, (b) is the holographic grating to produce the LG0

3
mode, and (c) is the hologram displayed on the SLM.

Fig. 3. Spiral spectra of the triangular aperture based on DSI.
(a) Intensity spectrum jAl;pj2, (b) phase spectrum argðAl;pÞ
(c) l spectrum Cl ¼ P

pjAl;pj2 as a sum over all the p indices,
(d) simulation results of the total initial field at the z ¼ 0 plane.

Fig. 4. Numerical (upper row) and experimental (lower row)
results of diffraction of the OAM beam with l ¼ 3, which illus-
trate the gradual birth of the triangular optical lattices.
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its external points specified by N ¼ lþ 1, which can be
used to reveal the OAM number of the incident twisted
light beams[33]. The good agreement between the experi-
mental observations and the numerical simulations con-
firm that the OAM eigenmode decomposition method is
a useful way to simulate the diffraction pattern of twisted
light beams in a quantitative way at any propagation dis-
tance. Moreover, our study offers a more intuitive picture
as to how the diffraction patterns are formed gradually
from the incident plane to the desired plane. Under the
condition of a known input twisted beam, the method
may also be used to estimate the propagation distance
and the rotational symmetry of the aperture for a given
diffraction pattern, which may be very useful in OAM-
based optical remote sensing.
In conclusion, we present both numerical and

experimental results, as is simulated by the OAM eigen-
mode decomposition method or the idea of DSI, to
describe the twisted light diffraction behavior both in
the near-field and far-field regions. We demonstrate the
gradual formation of triangular optical lattices as the light
beams propagate from the incident plane to the far-field
plane and also reconstruct the diffraction patterns of op-
tical lattices in the far-field region as researchers have
done before, confirming the good viability of the theoreti-
cal method. Although we only considere the cases of the
incident light beams of specific OAM diffracted by a spe-
cific triangular aperture, it is noted that this method, in
principle, can be applied to any incident fields of arbitrary
intensity/phase profile diffracted by any apertures of
arbitrary shape. In the frame of DSI, it also provides a
useful understanding of light diffraction from the angle
of modal decomposition, where the constituent LG modes
propagate independently and contribute cooperatively
to form diffraction patterns at any desired plane. This
method is particularly useful to describe the twisted light
diffraction with rotational symmetry.
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